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ABSTRACT 

A new class of non-decreasing stochastic processes is characterized. 

These processes satisfy a generalization of the notion of an increasing 

failure rate.  From physical considerations, these processes seenr 

suitable for describing the process of cumulative wear or damage. 

The main interest with the model is an investigation of the first time 

until the process exceeds a random barrier. 

For this class of processes, it is shown that the first passage 

time random variable across a random barrier has an increasing failure 

rate, regardless of the distribution of the barrier.  In addition, by 

the use of certain intuitive, non-parametric assumptions, tight bounds 

on the moments of this first passage time random variable are obtained. 



INTRODUCTION 

Few mechanistic models have been developed for processes whicn 

result in the failure of components. This is largely due to the 

great number of difficulties involved in trying to infer something 

about the underlying physical mechanism of wear from observations of 

the failure times. 

H.E. Daniels (19U5) and Z. W. Birnbaum and S. C. Saunders (1950) 

have proposed mathematical models justifying the assumption of the 

normal and gamma families respectively, for the distribution of the 

failure times in certain situations. A. Mercer (1961) considered 

the case in which the wear process consisted of blows occurring 

according to a Poisson process, the amount of wear per blow having a 

gamma distribution. He assumes further that the probability that the 

component fails in the interval (t, t + dt), given the wear is x , 

is of the form  X, (t) + ^ x .  He obtains reasonably simple results 

when the amount of wear per blow is constant or an  exponential random 

variable. E. Parzen (1959) considers the cumulative damage to a 

component subject to a large number of blows at a finite number of 

stress levels. 

The model of wear we shall consider is one in which a component 

wears out according to a non-decreasing stochastic process {Z | t > Ol , 

where Z , a random variable, represents the cumulative damage at time 

t .  Now, rather than focusing our main attention on certain selected 

wear processes governed by mathematically convenient families of 

distributions, we shall take the perhaps more realistic approach of 

studying certain non-parametric classes of processes based on physical 
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considerations. We shall further assume that the component functions 

until the cumulative wear exceeds some critical threshold, in general, 

a random variable, at which time it breaks or otherwise becomes useless. 

It is this first passage time until breakdown which is of special 

interest in this investigation. 

The wear of railroad tracks appears to be well described by 

this sort of model. One reason for replacing the track is that the 

weight per foot of the track decreases after use, and the track 

is considered too dangerous to be used if the weight per foot drops 

below some predetermined level. The wear in the track is due to a 

number of causes. When a train goes around the curve of a track, 

the flanges of the wheel repeatedly hit the rails. The force and 

frequency of these blows depend on the weight and speed of the train. 

A second cause of wear is that adjacent rails may have settled to 

slightly different levels, so that the train drops from one level 

to the next. A third and less destructive type of wear is the nearly 

continuous abrasive action due to nature. These three wear mechanisms 

will be of different degrees of importance in different sections of 

the track. 

Summary: 

In this paper, we characterize a new class of non-decreasing 

stochastic processes. These processes satisfy a generalization of the 

notion of an increasing failure rate, and from a physical point of view 

seem very suitable for describing the process of cumulative wear 

or damage.  Our main interest with this model of wear will be an 

investigation of the random first time until breakdown.  Since we 
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shall not assume that the wear process is knovn exactly, our results 

deal in the main with properties of the failure rate of the time until 

breakdown and with bounds on the moments of this random variable. 

We shall now summarize partially the content and organization 

of this paper.  In Section C, we state the definitions of certain 

fundamental mathematical concepts we will need such as total positivity 

of order two, monotone failure rate and P6lya frequency density of 

order two. These definitions will be referred to throughout the paper. 

In Section 1, we characterize the class of processes which we shall 

be concerned with throughout this paper.  More exactly we shall consider 

those non-decreasing stochastic processes {Z | t > 0) such that 

p(zt.h>x lztix) 

be non-increasing in x , for all t > 0 , and h > 0 whenever defined. 

Such processes we shall call stochastic wear processes. We shall show that 

the compound-renewal process under certain non-parametric assumptions, 

as well as the translated Poisson process and the gamma process, are 

examples of stochastic wear processes. 

In Section 2, we apply the concept of a stochastic wear process 

to an investigation of the failure rate of the random first time for 

the process to cross a random threshold.  The key result here is 

t^iat for stochastic wear processes with stationary, independent 

Increments, the first passage time random variable has an increasing 

failure rate, regardless of the distribution of the random threshold. 

Tc show that this is not true in general, we provide a counter-example 

where the first passage time has first a decreasing failure rate, 

and then a constant failure rate for two successive intervals of 



known threshold levels. We also remark in this section that the 

assumption that (Z | t > 0) is a stochastic wear process is equivalent 

to imposing a structuring or ordering of the failure rate function of 

the first passage time across a known threshold. By the above, we mean 

if we increase the known threshold level, then the fail'ire rate function 

of the first passage time uniformly decreases. 

In Section 3, we consider the first passage problem across a random 

threshold for the special important case of the compound renewal process. 

Assuming that the blows have an Increasing failure rate, we obtain 

tight upper and lower bounds on the mean and variance of this first passage 

time. We also obtain for any non-decreasing stochastic process the 

Laplace-transform of this first passage time across a random threshold. 

In Section k,  we investigate the operations on stochastic processes 

under which the structuring of the failure rate mentioned above is 

preserved. We find that this structuring is preserved under formation 

of a "k out of n" system and, with certain conditiono, under convolution. 

We also investigate a strengthening of the concept of a stochastic 

wear process and, as an application, consider the case where the 

threshold is known probabilistically. 

0. Preliminaries 

The following definitions will be referred to frequently In 

this investigation of stochastic wear processes. 

Definition 1: 

A function g(x,y) ^0 of two variables ranging over linearly- 

ordered one dimensional sets X and Y respectively, is said to be 

totally positive of order 2 (TPp) If for all ^ 1 x2 / and 
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yi ^ y2 ' then 

six^y^ z(\>y2) 

8(^2,yi^ 8(Vy2^ 

^0 . 

Definition 2: 

Let X be a random variable. Then X Is said to have an 

Increasing (decreasing) failure rate, IFR(DFR), If and only If 

P(X ^x + h|X>x) is non-decreasing (non-increasing) in x where 

defined and for all h > 0 . 

Definition 3; 

Let X be a random variable. Then X is said to possess a 

f (x) 
P(5lya frequency density of order 2 (PFp)    if and only if      ,       i   ',  t 

is non-decreasing in    x ,  for all real    A   where defined and whero 

F(x) = P(X <. x) ;  f(x) = T- F(x) .     The concepts of total posltlvity, 

monotone failure rate, and P<5lya-frequency density are related in the 

following way: 

Lemma 0 

Let    F(x)  = P(X > x)    and    f (x) = —■ F(x) . 

Then 

1)  The random variable X is IFR if and only if F(x-y) is TPg 

in x and y . 

ii)  The random variable X is DFR if and only if F(x+y) is TPp 

in x and y where x+y ^ 0 . 

ill)  The density function of the random variable X is a PF2 density 

function if and only if f(x-y) is TP  in x and y . 
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iv)      If the random variable    X   possesses a PF^ density, then    X 

is an IFR random variable.    The converse is not true. 

(See Barlow,  Proschan, 1965) 

1.      A Generalization of the Failure Rate Concept to Stochastic Processes 

Let    (Z.  I t > 0)    be a non-decreasing stochastic process where the 
w 

values at t , denoted Z , are finite, measurable functions on a 

probability space (fl. A, P) to the real line. Let Z0 = 0 and the 

process be separable whenever necessary. 

If Z  is thought of as the cumulative weax on some component 

at time t , and failure occurs whenever the process exceeds x , 

then 

M P(Zt+h > 
X I Zt ^ x) 

is a natural generalization for stochastic processes of the failure 

rate (see definition 2). This is the probability that given that the 

component has not worn out at time t , then h units of time later, 

it will have worn out. We consider the assumption that (l) is non- 

increasing in x , whenever defined, for all h > 0 , and t > 0 , 

Perhaps a more intuitive way of viewing condition (l) Is to require 

(2) P(Zt+h 1 x I Zt ^ x) 

to be non-decreasing in x . 

Definition k: 

A non-decreasing stochastic process (z | t > 0; will be called 

a stochastic wear process if (l) is non-increasing in x , where defined, 

for all h > 0 , and t > 0 . 



Lemma 1 

The stochastic procesf  (Z | t > 0) Is a stochastic weax 
X» 

process if and only if P(Zt <. x) is TP  in x and t . 

Proof:  Write (l) as 

(5) 
F(x.t) - Ffc.t + h) 

F(x,t) 

where    F(x,t) = P(Z   ^. x) .    By noting that  (l) or equivalently (5) 

is non-increasing in    x    if and only if    -Vri—-r—^     Is non-decreasing in 
i!\X,t) 

x , we see F(x,t) must be TP. in x and t . 

Remark:  Suppose f(x,t) » 4- F(x,t) exists. Then it can 

be shown as an easy consequence of the fact that F(x,t) is TP_ 

that 

{k) F(x,t) 

f(x t) 
is non-decreasing in t , for all x . Now  > * ■( dx has the 

probabilistic interpretation that P(Z e (x-dx,x) | Z ^ x) is non- 

decreasing in t , again quite intuitive for non-decreasing processes. 

As examples of processes which are stochastic wear processes (according 

to Definition h)  we offer the following: 

Example 1:    Let Z  be the compound renewal process, that is, 

N (t) 

Y  if N (t) > 0 
i     s 

i-1 
zt, < 

0 otherwise 

where N (t) denotes the number of renewals in (O.t] with respect 
s 

to a spacing renewal process (S.) . ,  and (Y 1    are 
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independent,  identically distributed samples from a non-negative random 

variable    Y ,  independent from the spacing random variable    S . 

This model  of wear is appropriate if a component  is subject to wear 

produced by a series of blows,  the blows occurring according to a renewal 

process. 

Lemma 2 

If both the random variables    S    and    Y    possess PFp    densities, 

then the compound renewal process is a stochastic wear process according 

to Definition k. 

Proof:        By Lemma 1,  it is equivalent to prove    F(x,t) » P(Z   <_ x) 

is TP    in    x   and    t .     It can also be shown easily that if    f (x,t) = 4- F(x,t) 
2 ox 

is    TPp    in    x   an-i    t  ,  then    F(x,t)    is    TP      in    x    and    t .     Hence,  it 

suffices to show    f(x,t)    is    TP      in    x    and    t  . 
00 ^ 

Now f(x,t) = 2 P(N (t) = n) f (x) where * represents 
n=0   s        Y 

convolution.  However, since both S and Y have PFp densities, it 

follows that P(N (t) = n)  is TP  in n and t and f"*(x) is TP^ 
S d I 2 

in    n    and    x  (Karlin,  Proschan i960).     Hence,  since total positivity is 

preserved under convolution  (P(5lya-Szeg6,  1925),  we have    f(x,t)    is 

TP      in    x    and    t  . 
2 

Example 2; Let    Z    = N   (t)    where    N  (t)    denotes  the number of * t        s s 

renewals in     (O^t]    where    S  ,  the spacing random variable,  has an 

increasing  failure rate.     This is a weaker condition than requiring    S    to 

have a PF    density.     If    [x]     denotes the greatest integer contained  in    x 

then 

,       , (rx]+l)*    , 
F(x,t)  -- lV- (t) 
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is    TP      in    x    and    t    if    F  (x)  = ?(S < X)    is  IFR (Barlow,  Proschan, 

1965).     Hence    (z    | ^ > 0)      is a stochastic wear process. 

Remark:      F(x,t)    is also    TP2    in translation of    t ,  for each 

fixed    x    since the IFR property is preserved under convolutions  (Barlow 

and Proschan, 1965). 

Example 3; Let    Z   = Y    + at  , where    c    and   a    are constants 

greater than zero, and   Y      the compound Poisson with constant blows,  i.e., 

"       Nit) 

c )     1        if    N(t) > 0 

t i=l 

0 elsewhere 

-^t/     vn 
where    P(N(t) = n) = y^L.   n . 0,1,2... 

This model of wear is appropriate for a component which,  in addition 

to undergoing wear due to a series of blows, is undergoing an abrasive 

continuous wear.     We shall show in Section U as a consequence of 

Theorem U that    Z      is a stochastic wear process. 

Remark:       In this case, the random variable    Z     has a discrete 

PF     density for each   t    and hence possesses an increasing failure 

rate for each    t . 

Example U: Let    (Z   | t > 0)     be the gamma process,  that is, 

r   -x t-i 

f(x,t) =  <,     r(t) 

0 otherwise. 
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In the manner of Smith (195Ö), one can consider Z  as the 

limiting form of a compound renewal process where the blows, in 

general, are very small in magnitude, but occur more and more frequently. 

Since it is well known that f(x,t) is TP2 in x and t , then we see 

that Z  is a stochastic wear process.  However Z  is not IFR for 

every t .  In fact, if t < 1 , Z  is a DFR random variable; if 

t > 1 , Z.  is an IFR random variable, and Z  is both IFR and 
t "1 

DFR since the failure rate is constant. 

Not all non-decreasing stochastic processes are stochastic wear 

processes, i.e., it is not true in general that is, P(Z   > x ( Z £ x) 

is non-increasing in x , for consider the process {Z | t > 0) where 

Z 

Y   if  t < 1 
t       ^ 

= <  Y,  if  t > 1 and Y < 1 or Y > 2 
t       1        ' 1 ^       1 

Y   if  t > 1 and 1 < Yi ^ 2 

where (Y | t > 0) is the gamma process.  Then it can be shown that 

P(Z2 > 2 | Z1 ^ 2) > P(Z2 > 1 | Z1 ^ 1) and hence 

{Z | t > 0} is not a stochastic wear process. 
X» 

2.  Failure Rate of First Passage Random Variable 

1  if x ^ 0 

Let      U(x) = j 
0  otherwise 

Then, since U(x) is Borel-meaoureable, the process {U(x-Z ) | t > 0) 

will be a measurable process for any fixed x (Halmos 1950).  Then, by 

Fubini's Theorem, and in the manner of anlth (1950) we can introduce the 
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random variable 

00 

T « /  U(x - Z )dt 

Clearly, T  is the first passage time of the non-decreasing process 

(z I t > 0) across the barrier or threshold at a knovn height of x . 

We shall now investigate the properties of the failure rate of 

T , under the assumption that {Z j t > 0} be a stochastic wear process. 

Theorem 1.    Let (Z | t > 0)  be a stochastic wear process with 

stationary, independent increments. Then for every x > 0, T  is an IFR 

random variable. 

Proof:   We use the following lemma, a proof of which can  be 

found in Barlow, Proschan (1965). 

Lemma 3 

If F^O) = F2(0) and F^y) ^ F^y) for all 0 ^ y ^ x 

and if Q(y) ^0 is non-increasing on [0,x] , then 

J   Q(y) dF1(y) ^ j    Q(y) dF^y) 

whenever the integrals exist. 

Proof of Theorem 1:    We must show for every    x > 0    and   h > 0  ,   that 

(5) P(Txlt + h |Tx> t) 

is non-decreasing in    t    where defined.    Now,   since 

p(Tx 1 t)  = P(Zt > x) 

then  (5)  can be expressed as 
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r  U-F(x-y,h)]d F(y,t) 
,,, J0 '  
(6)  ;  

F(x,t) 

where F(x,t) - P(Z ^ x) . 

Now (6) can be rewritten as 

(7) l-/XF(x.y,h)d (|^|j) 

By Lemma 1,  F{x,t) Is TP  in x and t .  Hence 

FCy,^)      F(y,t2)      whenever ^ ^ t2 

F(x,t )  '""  F(x,t2)      and O^y^x. 

Also,  we  note    F(x-y,h) ^_ C    Is  non-increasing in    y    on     [0,x]   .     H- nee, 

applying Lemma 5, we obtain 

rx /F(y,t  )\ rx /F(y,t  ) 

Hence,   by   (y)  and  (Ö),  we obtain  (5)  is non-decreasing in    t  ,  for all 

x > 0 . 

Corollary 

Let    (Z   | t > 0)     be a stochastic wear process with stationary. 

Independent  increments„     Let    X    be an arbitrary non-negative random 

variable.     Let    T    ,  a random variable,  denote the  first  time the 
A 

process  exceeds a barrirr at a height of    X .    Then    T      is an IFR random 

variable. 

Proof The proof follows  trivially since    T      is   IFR for all r x 

x > 0 , 

Remark concerning Theorem 1 ;  The fact that the random variable 

TY has an increasing failure rate implies that the random variable T 



has the following,  useful,  inherited properties  (for a proof of these 

properties and others,  see  Barlow and Proschan,  1965). 

i)      E(T^) ^    r(r+l)   [E(Tx)]r      if    r^l 

E(T£) ^   r(r+l)   [E(Tx)]r      if    0 < r < 1 

where        r(r) =    /      u      e    du 
J 0 

Note: 

Taking    r ■ 2    we see that  (i)  implies  that the random 

variable    Ty    has a coefficient of variation less than or equal 

to 1. 

ii)    P(TX^ETX)  = HZ^    IX) > e"1 

that is, the probability that at time ET , the process 

has not yet crossed the barrier at a height of X , is greater 

than or equal to e 

iii) If components are replaced upon failure where T  is the 

life of the component, then 

Var N(t) ^ EN(t) ^ t/ETx 

where N(t) 
n , 

>0 and P(N(t) ^ n) ^  Z Ut/ETx)
d exp (-t/ETx)/J.

, 

J=0L 

is the number of spares needed to last a length of time t . 

A natural question at this point is, "Will T  have an increasing 

failure rate, in general, if [Z | t > 0) is a non-decreasing process?" 

The answer is no as the following counter-example demonstrates. 

Counter-Example:  Let Z = N (t) denote the number of renewals 

in (0,t] where S , the spacing random variable, is the gamma random 

variable with parameter a < 1 ; that is, let 
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I  .jQ Q-l -Xx 

fs(x)= <  X r(o)  lf x^0 

0 otherwise 

where f (x) is the density functions of tv • random variable S 
s 

Then, since 

P(TxCt).F(W^)*(t),  x>0 

it can quickly be shown that 

i)  T  has a decreasing failure rate if ([x]+l) Q< 1 

ii)  T  has a constant failure rate if ([x]+l) 0 = 1 
x 

iii)  T  ha.T an  increasing failure rate if ([x]+l) Q> 1 . 

Hence we have an example where the random variable T  does not 

have an increasing failure rate function for every value of the threshold 

index x . 

Lemma k 

Let    {Z    | t > 0)    have stationary,   independent,  non-negative 

increments.     Then 

ET   > -£- for all      x > 0  . 

The inequality is  sharp. 

Proof: 
/oo p 00 p 00 

U(x-Z )dt)    =    /  E(U(x-Z  ))dt =     '  F(x,t)dt 
o J 0 J 0 

Now,since  (Z | t > 0)  is a non-decreasing porcess, we can say 
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00 
oo r—i 

ETx - /     F(x,t)dt^h    > F(x,n,h)    for all    h>0. 
0 nti 

But,  since      (Z   | t > 0)    has stationary,  independent increments, 

F(x,n,h)  » F(x,h)n* 

00 

Hence )     F(x,nh) = EN    (x) 

nal 

where N (x) denotes the number of renewals in (0,x] where the 
hi 

spacing random variable is Z .  Hence, we obtain 

ET = / F(x,t)dt ^ h EN  (x) ^ h 
x o \     ^    ^ 

and since EZ, = HEZ , we obtain the desired result by letting h go to 

zero. 

The lower bound is attained by the trivial process (Z » t EZ | t > 0), 

Corollary 

There is no non-trivial stochastic process    (Z   | t > 0) 

with stationary,   independent,  non-negative increments for which 

Z    , a non-discrete random variable,  is     IFR    for each    t . 

Proof: 

ET,, 
' 0 

^ - /    F(x,t)dt    h + h     )     F(x,nh) . 

nsj. 

Hence. ET < h + h EN (x) for all h > 0 . Now, if Z^ were 
zh h 

IFR for all    h > 0  ,   then by Barlow,   Proschan  (1965), we would have 

*%<*' ^i^-^i     for a11 h>0 • 
Hence, letting    h    go to zero, we get 
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^x^ 

But from Lemma U,  we have 

x 

Hence 

Hence,  teeing Laplace  transforms on both sides with respect to    x , we 

obtain 

 TsE— 2 
s log E(e      1) s EL 

-aZ -sEZu 
or equivalently    E(e ) = e i.e.,       (Z | t > 0}    is the trivial 

degenerate process. 

Remark:      Staith  (1958) in his investigations of arbitrary 

stochastic processes with stationary, independent increments demonstrates 

that 

^x ' i^ + 0(X) 

and ETx+h - ET^ = — + 0(x) for all h > 0 . 

Hence, even though (Z | t> 0) is an unknown stochastic wear process 

with stationary, independent increments, many of the properties of the 

random variable T  are known. 
x 

Lemma 5 

Let    (Z    I t- > 0)    be an arbitrary stochastic wear process. 

Then,   for every    L > 0  ,   the ra'-io of the mean time the process 

spends under    x    in t.ae  interval     (0,L)    to the mean time the process 

spends under    x    is the  interval    (0,  oo)    is non-increasing in    x . 

-16- 



Proof: By  Lemma 1, we have 

(9) FCx^u)    FCX^V) 

F(x2,u)    F(x2,v) 
^0 

whenever x < xÄ , u < v . 

Integrating (9) on u from 0 to L , and on v from L to 

oo /  we obtain 

(10) 00 

F(x.,u)du    / F(x^,v)d\ 
0   i       JL   ■L 

J    F(x2,u)du   J    F(x2,v)dv 
^.0 

Adding column one to column two of (10), and noting that 

E( /  U(x-Z)dt ) »     E(U(x-Zj)dt - / F(x,t)dt 
VJ0     t  /   w 0       t     J0 

Is the mean time the process spends under x ?n the Interval (0,L) , 

we obtedn the desired result. 

Definition $: 

A process {Y | t > 0) will be said to possess the structured 

failure rate property If 

(11) p(Yt ^y + h |yt > y) 

Is non-Increasing In t , whenever (ll) is defined, for all y and 

h> 0 . 
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Lemmfl 6 

The stochastic process    (Z   | t > 0)    is a stochastic wear 

process if and only if the process    (T    | x > 0)    possesses the structured 

failure rate property.     Proof is obvious. 

Remark:    Lemma 6 agrees with our Intuition since we would expect 

that as the threshold level    x    increases,  the failure rate function 

of the random variable    T     should decrease.     We also observe  that under 
x 

the conditions of Theürem 1, that the failure rate function of the random 

variable    T    , that is, x 

(12) P(Tv ^t + h |T   > t) 

is not only monotone in t , but also monotone in x . 

We shall have more to say about this structuring of the failure 

rate property in Section h.    Now we shall turn our attention 

towards the important compound-renewal wear process. 

5.  The First Passage Time Over A Random Threshold for the Compound 

Renewal Process 

Let 

r N (t) 
s 

y YI   if Mt) > o 
Z = <  i-1 
t 

otherwise 

where N (O denotes the number of renewals in (0,t] with respect to 
s 

a spacing renewal process  (^Ji,-! ' Let ^1^1 1 be indePen(ient* 

identically distributed observations of a non-negative random variable Y , 

independent from the spacing random variable S . 
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Aß noted before, the compound renewal process is appropriate 

whenever a component undergoes wear produced by a series of blows, the 

blows occurring according to a renewal process.     In sections one and 

two, we have seen under certain non-parametric assumptions concerning 

the spaclngs between Llovs and the size of the blows, that the first 

passage time over a random threshold has an increasing failure rate. 

This is true regardless of how the random threshold values are distributed. 

Now we shall obtain tight bounds on the mean and variance for the 

first time for a compound renewal process to cross the random threshold. 

We shall assume that only the mean of the random threshold is known, 

and that the random magnitude of the blows has a non-decreasing failure 

rate,  i.e.,    P(Y ^ y+h | Y > y)    is non-decreasing in    y   whenever 

defined.     This Includes the gamma and Weibull distributions for some 

range of the parameters involved, as well as the exponential and 

degenerate distributions.    The following lemma is pertinent to this 

section. 

Lemma 7 

Let      Z   | t > 0      be an arbitrary non-decreasing process 

where    2=0.     If   T     Is the first time for the process to cross 

a random threshold   X , then 

-sT 
(13) E(e      X) . P(ZV > X) 

where V is the exponential random variable with mean - . 

Proof: 

-sT       r oo 
(Ih) E(e  X) » - / e"8tdG(t) 

J0 

-19- 



where G(t) - P(TX > t) . 

Integrating (ik)  by parts, we obtain 

"8TX        f ^ -st 
(15) E(e   ) = 1 - s / e  G(t)dt 

Now    G(t) -    Z^00 P(T   > t)dF(x)    where    F(x)  » P(X ^ x) .     Hence, x   ' 0 x 

n oo 

(16) G(t) =    /     P(Z    < x)dF(x) = P(Z    < X) 
J0        t t ^ 

Hence, by  (15) and  (l6),  we obtain (13). 

Corollary 

r 0° -sT n p 00 -aZ 
/      -Q.x„/        Xv Is/      -su  .    ^ Uv 
/     e ^ E(e      x)dx - - - "   /     e      E(e      U)du 

Proof:   In Lemma 7,  let X denote the exponential random variable 

with mean - .  Then from (15), we have 

-sT r "o -sT 
(17) E(e      X)  =    /    qe-<1XE(e      X)dx 

J0 

, 1 -     rT'Vz        x)8e"SU(1e"qXdx du Vo      u 

se      du . (18) = 1  -    /    E(e      u) 
J0 

Hence,  dividing   (l8) by    q , we have the desired result. 

Co>-ollary 

For the case of the compound-renewal process defined in 

Section  5,  we obtain 

r^.qx     -PT Mp)(i-f(q)) 
(19) /    e qX

E(e      x)dx =    -^ =  
Jo q(i-f,

Y(q)fs(P)) 

where    fv(q) = E(e-qY)   ;     f  (p) = E(e-pS)       . 
1 s 
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Proof:   Since the double La/lace transform of Z  for the 
t 

compound-renewal process is well known,   the result  follows easily. 

Formula  (19)  is a very attractive general formula,   but unfortunately 

does not yield explicit  solutions  except to rather simple problems. 

Alternatively we will calculate the first and seconi moments of    T ^ x 

directly.     For these calculations,   the  following lemma is  required. 

Lemma 8 

Le+     N   (t)    denote  the number of renewals  in    (0,t]     where 

the spacing random variable    Y    is  distributed according to    F  (x)  . 
00 

If H^Ct)  =  Y     n^V) i = l,2,... 
n=l 

n 

then E(NY(t)n) =     ^) (-1 ^H^Ct) n=l,2,.. 

J=l 

Proof; 
00 

(21) E(NY(t)n)  =   Y,   ^V^  -k) 
k=0 

Y   R"(Ff (t)  - F^^O) 
k=0 

.  n   .        .n.     k*,   N 
(k  -(k-1)   )  FY   (t)     . 

k=l 

But 

(22) kn - (k-i)n = y (n)(-i)j+ikn-j 

Hence,   (21) and  (22) yield 
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oo  n 

E(NY(t)n), Y y (j)(-i)n+v-j pf (o 
k-1 J-l 

n 

Y (n)(-i)j+i 4n-j)(t) 

Note: It can also be shown 

4£)(t) = E(NY(t)
i) +/  Fy(t-u)dH^

)(u) i  » 1,2,...  . 

Also, we see H(0)(t) = E N (t) . 

Theorem 2.    Let {Z | t > 0} be the compound-renewal process defined 

in Section 5.  Let TY be the first time the process exceeds the 

random threshold X .  If Y , the random magnitude of the blows, 

has a non-decreasing failure rate, then 

2 / 2   2v 
on ,  (o + u. ) 
-^- < Var Tv < 0^ +  

&   s 

u Y     "  X ^ s      ii Y 

where 

M = E(S) and o = Var (S) where S is the random spacinga 
s s 

between blows. 

M = E(Y) where Y is the random magnitude of the blows and 

u a E(X) where X is the random height of the barrier. 

The above \iprper bounds «yre tight. 
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Proof: 

E(TY |X = x) = /   F(x,t)dt 

oo 

Now since F(x,t) = 2  P(N (t) » n) F" (X) where F (x) a i ) We have 
n=0    S        Y Y 

^     ♦     r ^ 
E(T |X = x) =  )  F^ (x)    p(N (t) = n)dt 

A L—^   I     j       S 
n=0       u 

But 

/  P(N (t) = n)dt -    (FU+1; (t) - F  (t))dt 
J0    s J0   S fa 

= (n+l)u - "u = u s    s   s 

Hence 

(23) E(TX |X = x) = Mc(l + ENY(x)) 

since J? 

EN (x) =  ^  FJ#(X) . 
Y 

n-1 
2 

Similarily, we obtain E(TX | X = X) by noting 

2 , f00 

E(TY | X = x) = 2 /  t F(x,t)dt 
x       Jo 

= 2 7 F"*(x) r t(F<
n+1)*(t).?f(t))dt 

Y  Fn*(Kl [O2 + 1 + 2n u2] 
rt=0  Y     S 

Hence 

(2M E(T^ | X o x) = 2 ^ H^ + (o^ + ^2) H(0)(x) 

By Lemma 8 

(25) 24l)(x) = E(N^(x)) + H^
0)(x) 



Hence, substituting (25) into {2k),  together with (25), we obtain 

(26) Var(Tx I X - x) - us(Var NY(x)) + as(ENY(x) + l) 

Now, as shown by Barlow and Proschan (1965), if Y has an increasing 

failure rate, then 

(27) Var NY(x) ^ENY(x) ^^J- 

Hence, using (25), (26), and (27), and unconditioning on X , we obtain 

the upper bounds in Theorem 2. To obtain the lower bounds, we use 

the fact that 

Var N (x) ^0 ; EN (x) > 7- - 1 

and uncondition on X . 

The upper bound of Theorem 2 is attained when Y is the expo- 

nential random variable. 

Remark: Soith (1955) has shown if {Z | t > 0} is the compound 

renewal process, then Z.  is asymptotically normal with mean ttZu , 

and Variance t Var Z. , where EZ, ■ =^ , and Variance 

2   2 2 8 

GY   Y as 
Z. ■ — + —?— . Also, it is clear that if a large number of steps 

^s   p. 
^s 

are necessary to reach the barrier, then the distribution of T  will 

be nearly normal.  In fact, since 

P(Tx < t) - P(Zt > x) , 

it can be shown that    T     is asymptotically normal with mean    gg—   and 

x Var Z1 

of the renewal random variable    N(x)   ,   for renewal process   (Feller,   (1957)). 

Variance      ,  in complete analogy with the asymptotic distribution 
(EZ1)

3 

.0).. 



4. Preservat ion of St ructural Failure Rate Property and An Extension 

We noted i n Lemma 6, t hat t he assumption that (Zt I t > 0} be 

a s t ochastic wear process was equi valent to the process (T I X> 0} 
X 

possessing a structuring of i t s failure rate as defined by Definition 5. 

I t is natural t o inquire under what operations with s ochastic 

processes this struct uring of the failure rates is preserved, This is 

important in i nvest i gat ing st ructures such as parallel and series 

s ystems where the wear or damage t o a s t ructure is actually the minimum 

or the maximum of a sequence of different wear processes. Also, since 

the total wear on a structure is often composed of two distinct types 

ol wear which add together, it is important to investigate conditions 

for which this structuring is preserved under convolution. 

Theorem 3. Let (yt(i) I t > O} i 1 2 be f , • , , .•• ,n a sequence o 

stochastic processes such t hat for each t , t he set of random 

(y(i ) } 
variables t i = 1 ,2, ••. ,n are independent and identically 

dist ributed. Define (M~k) It> 0} , k ~ 1,2, .•• ,n as a sequence of 

st ochast i c processes where the random variable M(k) denotes the kth 
t 

l argest over i ~ 1,2, ... , n of the set If each process 

(Y~i) I t> 0 } i = 1 , 2, •.. ,n possesses the structured fai lure rate 

pr operty of Def i nition 5, then t he s t ochastic processes (M~k) It ) 0} , 

k = 1 ,2 , ... , n , do likewise. 

Proof: We shall need the following lemma. 

Lelllll8. 9 

If (Yt It > 0} possesses t he structured failure rate property 

of Definit ion 5, then 
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is non-increasing in t for all x , and is TP^ in x and t . 

Proof of Lemma 9:  Let F(x,t) = P(Y 1 x) ; f(x,t) « — F(x,t) . 
* dx 

Then directly from Definition 5, we have 1 - F(x,t) is TP  in x 

and t  since 

/       v.\ i v,    \  F(x+h, t) - Ffx.t) 

As an easy consequence, we ^et    -   F7y t\    is non-increasing in    t . 

Hence,   since    1-F(x,t)  = exp(- /^  ^.^u t))
au)    we have that 

F(x,t)    is non-increasing in    t . 

Proof of Theorem 5.     Let 

PCY^ > x) = G(x,t)  ;   - ^G(x,t) - g(x,t)        i - l,2,...,n 

P(M|k) > x)  - Fk(x,t);   - ^^(x^)  » fk(x,t)    k -l,2,...,n 

Then, n 

Fk(x,t) =   Y      (^   (G(x,t))i(G(x,t))n"i  . 
i=ak 

Now,   in the manner of Barlow,  Proschan (1965), we have 

V"'1'° Vrw U-k);U0    
u (l-u)   du 

Hence,  we obtain 

Fk(x,t) X4L. %^i r1^-! ii^ + 
3vrr    g(x,t) jn G(x,t) V"'"'      0^"»^  - 0 

n-k 
dv 

Now, since  (Y   | t > 0)  has the structured failure rate property, 

(Ifx t) 
it is easily seen   )  ' ^i     is non-decreasing in t .  Hence, using Lemma 

k(x' ^ (k) 
9, we attain   >  r\  non-decreasing in t , i.e.,   (M^ ' | t > 0) 

k  ' 

possesses a structured failure rate k « l,2,...,n . 
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Remark:     If    k=n  ,  we can weaken Theorem  j by eliminating the 

condition that    {x\   ') i =i,2,...,n    be identically distributed 
v 

r. v. 's for each t .  To see this, note that if k = n, then 

F (x,t) = n G (x,t) where G (x,t) = P(Yu; > x) . 
n       i=l 

p 

Hence, 7- 7-log F (x,t) = Z ~ —- log G (x,t) 
' dx dt     n dx dt      i 

.  . d  d 
Now,  p(x,y) > J  is TPg in x , y if and only if 77 T~ 

log p(x,y) > 0  (Karlin 19,;7).  Hence,  G (x,g) TP2 in x , t for 

each i = l,2,...,n implies Fn(x,t) is TP  in x , t . 

Theorem 4. 

a) Let {Y;
1
^ I t > 0) and [YJ

2
^ | t > O) be arbitrary 

stochastic process where Y and Y^   are independent random 

variables for each t . 

b) Let (Y   I t > 0) possess the structured failure rate 

property of Definition 5 and each random variable Y   , t > 0 

possess an increasing failure rate. 

c) Let g (x,t) be TP  in x and t where g (x,t) denotes 

(2) 
the density function of the random variable Y   .  This, a.r; can be 

(2) 
easily shown, implies {Y ' | t > 0} possesses a structured failure 

(2) rate.  Finally, assume that each random variable Y    , t > 0 

possesses a PF density.  Then under conditions (a), (b), (c), the 

stochastic process 

(Y^.yf |t>o) 

possesses the structured failure rate property of Definition '•)  and for each 

t , the random variable Y;
1
^ + Y)2^  if IFR . 
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Note: 

We have seen from Theorem 1 and Lemma 5 that the process 

[T | x > 0)  satisfies condition (b) if the underlying wear 

process is a stochastic wear process with stationary, independent 

increments.  Other examples of processes satisfying conditions 

(b), and (c) are the compound Poisson with constant blows, 

and the degenerate process.  Before we can prove Theorem k,  we 

must state the following lemma. 

Lemma 10 
/oo 

f(x-u,y) h(u,y)du 

If loth f(x,y) *.id h(x,y) are TP  in x and y and TP 

in translations of x for each y , then «(x,y) is TP  in x and 

y and TP- in translations of x for each y .  Proof is duf to 

Ghurye and Wallace (1959). 

Proof of Theorem k: 

Let H(x,t) = P(^  + Y[  > x) 

and 0^,0 = PCY^) £X)   i = 1,2 . 

Then it is clear that 

H(x,t) = /  (1 - G1(x-y,t))d G2(y,t) 
-00 

From condition (b) and Lemma 9, we have 1-G (x,t) is TP  in x 

and t .  From condition (b) and Lemma 0, we have l-G-U-y^)  is 

TP  in x and y for each t . From (c) and Lemma 0 we have 

d G (y,t) is TP  in y and t and TP  in translations of y 

for each t .  Hence, by an application of Lemma 10, we have H(x,t) 
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is TP  In x and t .  Hence by Lemma 9, 

[Y^   + Y|
2)
 |t> 0} 

possesses the  structured failure rate property.     Also,   since 

H(x,t)    Is    TP0    in translations of    x    for each    t  ,   then by Lemma 

0, we obtain that for each    t > 0  ,   the random variable    Y        + ^+ 

is  IFR. 

An extension of the stochastic wear process characterization of 

Definition k  is to require    q(t,x)   ,   the density function of the random 

variable    T     .   to  be TP^    In    x    and    t .     This indeed is a strengthening 
x 2 

atsumption since    q(t,x)    TP      implies that    P(T   > t)     is    TP      in 

x ,  t .     This  stronger condition is of interest in the problem of 

esti ating the threshold level,  having observed the time to failure.     We 

note  that this  stronger assumption is equivalent to the failure time 

statistic possessing a monotone likelihood ratio (for a definition and 

applications,   see Karlin,  Rubin 1956). 

As examples of processes possessing this stionger property,  consider 

the following: 

Example 1: Compound Poisson,  with PF    blows,  i.e.,  let 

00 

F(x,t) = P(Zt 1 t)  =   V     e    j^)"    Fn*(x) 

n=0 

where Y has a PF density.  Then 

rx 

P(t < T < t + dt) = q(t,x)dt = >    (l-F (x,y))d F(y,t)dt 
x . Q 1 y 

Now, by example 1 of section 1,  d F(y,t)  is TP  in y , t .  Also, 

it is well-known that l-F (x-y) is TP2 in x , y if Y is PF 
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Hence, by Polya-Sz-go (1925) q(t,x) is TP  in t , x . 

Example 2:  Let  {Z | t > 0) be a temporarily homogeneous strong 

Markoff process with a non-negative drift. Let Z a 0 . Let the process 

possess a realization with almost every path function continuous, where 

continuity is with respect to a suitable order topology.  If q(t,x)dt = 

P(t < T < t + dt) , then q(t,x) is TP  in t and x (see Karlin, 

196U) . Examples include the Poisson, Wiener and degenerate processes. 

As an application of the assumption that q(t,x) is TP  in t and 

x , we consider the case when the thresho"1 i X is known probabilistically, 

i.e. , 

P(X ^ x) = F(x) . 

In addition, suppose we have a collection of replacement strategies, say 

{p.(t))   i ■ l,2,...,n , depending on the observed time or age at 

failure of the component.  Such strategies might be to use a block 

replacement policy, age replacement policy, to replace more or leej 

often, or perhaps not to replace at all.  Let L (x) be the loss 

incurred if strategy i is used and x is the true value of the 

threshold. 

Consider 

;■* 00 

(L,(x) - L.(x))q(t,x)dF(x) . 
0 

We notice if X (t) < 0 , then action i is to be preferred over 

action j when t is observed; similarily if X . (t) > 0 , action 
X J 

J is preferred over action i . 

Now if L (x) - L.(x) has at most one sign change, say from 

negative to positive, then by the variation diminishing property 

(Karlin (196U)) of totally positive function, there exists a t  such 
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that 

1) if t < tn , action i is preferred over action J 

2) if t > t , action j is preferred over action i . 
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